Quadratic Residues
1. Quadratic Residues
An integer is a quadratic residue mod \(p\) if there exists an \(x\in\mathbb{Z}_p\) such that \(a \equiv x^2 \pmod{p}\).
An integer is a quadratic residue mod \(p\) if there exists an \(x\in\mathbb{Z}_p\) such that \(a \equiv x^2 \pmod{p}\).