Zero Divisor
1. Zero Divisor
An element \(a\in Z_n\) is a zero divisor if there exists a non-zero \(b\in Z_n\) where \(ab \equiv 0\pmod{n}\)
An element \(a\in Z_n\) is a zero divisor if there exists a non-zero \(b\in Z_n\) where \(ab \equiv 0\pmod{n}\)